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A Bayesian missing data framework for
generalized multiple outcome mixed
treatment comparisons

Hwanhee Hong,** Haitao Chu,” Jing Zhang® and
Bradley P. Carlin®

Bayesian statistical approaches to mixed treatment comparisons (MTCs) are becoming more popular
because of their flexibility and interpretability. Many randomized clinical trials report multiple outcomes
with possible inherent correlations. Moreover, MTC data are typically sparse (although richer than
standard meta-analysis, comparing only two treatments), and researchers often choose study arms based
upon which treatments emerge as superior in previous trials. In this paper, we summarize existing
hierarchical Bayesian methods for MTCs with a single outcome and introduce novel Bayesian approaches
for multiple outcomes simultaneously, rather than in separate MTC analyses. We do this by incorporating
partially observed data and its correlation structure between outcomes through contrast-based and arm-
based parameterizations that consider any unobserved treatment arms as missing data to be imputed. We
also extend the model to apply to all types of generalized linear model outcomes, such as count or
continuous responses. We offer a simulation study under various missingness mechanisms (e.g., missing
completely at random, missing at random, and missing not at random) providing evidence that our models
outperform existing models in terms of bias, mean squared error, and coverage probability then illustrate
our methods with a real MTC dataset. We close with a discussion of our results, several contentious issues
in MTC analysis, and a few avenues for future methodological development. Copyright © 2015 John Wiley
& Sons, Ltd.
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1. Introduction

Mixed treatment comparisons (MTCs), also called network meta-analysis, are meta-analytic statistical techniques
that extend traditional meta-analysis of two treatments (DerSimonian and Laird, 1986) to simultaneously
incorporate the findings from several studies on multiple treatments, where in most cases none of the studies
compared all the treatments at one time, to address the comparative effectiveness and safety of interventions
accounting for all sources of data (Hoaglin et al,, 2011; Jansen et al., 2011; Ades et al., 2012). MTCs are extremely
useful in the real-world scenario of having to decide between many different competing interventions for the
same population. In the MTC data framework, we can estimate a relative effect of two treatments rarely
investigated in the same trial by using all available and relevant evidence (i.e., both indirect and direct
comparisons) in a coherent way, strengthening inference (Lumley, 2002; Gartlehner and Moore, 2008). Bayesian
hierarchical statistical meta-analysis for MTCs with a single binary outcome has been investigated actively (see
e.g., Smith et al. (1995), Lu and Ades (2004, 2006), and Nixon et al. (2007)). However, we can easily generalize
the method to non-binary settings (e.g., continuous or count outcomes) by utilizing appropriate link functions
(Jansen et al., 2008; Welton et al., 2008; Dias et al., 2011a, 2013b).
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Two key issues in MTCs are heterogeneity on the treatment effects across studies and inconsistency, commonly
defined as between-trial variability and apparent discrepancy between direct and indirect comparisons,
respectively (Lumley, 2002; Lu and Ades, 2006; Higgins et al., 2012). We can model heterogeneity by assigning
a distribution (usually an exchangeable normal) to the treatment effects across studies. For three treatments, a
consistency equation can be defined as mgc=muc — mag, Where mpug is the relative effect between treatments A
and B, and inconsistency arises when this equality does not hold (Lumley, 2002; Lu and Ades, 2006; Cooper
et al, 2009; Dias et al., 2010; Lu et al.,, 2011; Piepho et al., 2012). Dias et al. (2011b) and Jansen and Naci (2013)
explain that inconsistency is another form of conflict among the means of the treatment effects, which should
not exist unless the trials differ with respect to effect modifiers, such as experimental settings or patients’
characteristics. Inclusion of multi-arm trials complicates the identification and interpretation of inconsistency,
and the sparsity of the data can lead to large uncertainty (i.e., wide 95% credible sets) regarding inconsistency,
making it difficult to distinguish from heterogeneity.

As many studies report multiple outcomes measured on the same subjects, correlations between both
outcomes and treatments should be incorporated in an MTC model. For example, similar types of drugs or medical
devices may tend to behave similarly, causing correlated results, and multiple outcomes can also induce
correlations (e.g., negative correlation between efficacy and safety outcomes). Lu and Ades (2009) and Franchini
et al. (2012) discuss modeling the correlation across treatments with a single outcome. Riley et al. (2007) and
Jackson et al. (2011) discuss when one can estimate within-study correlations between outcomes in bivariate
random effect meta-analysis, and thus produce estimates with smaller standard errors than in the independence
setting.

In MTC data with multiple continuous outcomes, we usually observe only the sample mean and sample
variance in each arm. However, sample correlations between outcomes are rarely reported for aggregated MTC
data. Recently published papers have addressed this issue of unknown within-study correlations, and some
recommended Bayesian approaches with informative priors. Efthimiou et al. (2014) develop a method to elicit
expert opinion about the within-study correlation between two dichotomous outcomes. However, they only
estimate a within-study correlation for a study reporting both outcomes, or else they impute a missing outcome
for each study by assuming zero within-study correlation, instead of borrowing information from the estimated
correlations among other studies. Bujkiewicz et al. (2013) use external individual patient-level data to construct
an informative prior for the within-study correlation between mixed outcomes, one continuous and one binary.
This method is obviously limited to the case where strong external evidence is available. Wei and Higgins
(2013) investigate a pairwise meta-analysis model for two outcomes, but applying their method to an MTC setting
appears too complicated. Schmid et al. (2014) investigate an MTC model for unordered categorical data with
partially missing event counts for multiple outcomes.

As most randomized controlled trials compare only two or three treatment arms, the result is often extremely
sparse MTC data from the perspective of missing data analysis. Although a standard MTC approach (e.g., Lu and
Ades (2006)) models the observed data, we can gain additional information from the incomplete records. Suppose
we calculate the missingness rate as the ratio of the summation of the number of missing arms and the total
number of treatments times the number of studies times the number of outcomes. Then, when we compare five
treatments for a single outcome, the missingness rate is typically 40% to 60% and could increase above 70% if 10
treatments are considered. We can impute such missing components based on a Bayesian hierarchical model that
accounts for between-treatment and between-outcome correlations using Markov chain Monte Carlo (MCMC)
algorithms instead of using observed data only. Especially when the missingness does not occur ‘completely at
random’, but depends on some observed or unobserved information, ignoring such missing data can lead to
biased estimators (Little and Rubin, 2002). For example, some treatments are discarded over time as accumulating
evidence suggests they are inferior. Alternatively, study arms might be chosen to satisfy regulatory or
reimbursement requirements, or even to further a company’s marketing strategy.

In this paper (extending earlier work of Hong et al. (2013a)), we propose a new MTC modeling approach
incorporating a missing data framework and compare this with the broadly used Lu and Ades (LA)-style approach.
Both approaches can be applied to a generalized linear model framework, but our own models can more easily
and flexibly incorporate correlations between treatments and outcomes. We model the correlation structure at
the random effect level, instead of imposing such correlation structure into our likelihood. By doing so, our
random effects can easily borrow information across outcomes and studies. In addition, our methods do not
require any external data (although informative priors for the covariance matrices remain welcome) and impute
missing data using full posterior inference, rather than by assigning unknown correlations arbitrarily. In addition,
we present our methods with two parameterizations, contrast-based parameterization and arm-based
parameterization, and discuss assumptions, advantages, and limitations of each parameterization.

The remainder of this paper is structured as follows. First, Section 2 describes our motivating data considering
the bivariate continuous outcomes case. Section 3 provides details of our Bayesian missing data hierarchical
modeling framework for MTCs under various assumptions to accommodate missing data and multiple outcomes.
Section 4 reports the results of simulation studies validating our approaches, while Section 5 delivers the results of
our analysis of the real data. Finally, Section 6 discusses our work, its limitations, several controversial topics in
MTCs, and unmet methodological challenges.
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2. Motivating data: knee pain osteoarthritis data

Figure 1(a) and (b) exhibits the trial network among physical therapy interventions for community-dwelling adults
with knee pain secondary to osteoarthritis (OA) in terms of pain and disability outcomes, respectively (Shamliyan
et al, 2012). A total of 54 randomized controlled trials are included to compare 11 therapies: no treatment,
education, placebo, low-intensity diathermy, high-intensity diathermy, electrical stimulation, aerobic exercise,
aquatic exercise, strength exercise, proprioception exercise, and ultrasound, coded 1 to 11 in that order. Each
study reported sample means of standard scores to measure the level of pain only (28 studies), disability only
(3 studies), or both outcomes (23 studies). The size of each node represents the number of studies investigating
the drug, while the thickness of each edge denotes the total number of samples for the comparison. The numbers
on the edges indicate the numbers of studies investigating the comparison (Chaimani et al., 2013). The network
features are similar for both outcomes, but we have limited information on the disability outcome, with fewer
connections between therapies and smaller total sample sizes overall than for the pain outcome.

The target population was pre-defined as adults with OA in outpatient settings who have had OA symptoms for
at least 2 months. That is, the 54 studies were selected under several strict inclusion and exclusion criteria, so it is
reasonable to assume their study populations are similar. Given literature concluding the various different
OA-reporting systems are roughly equivalent to each other; we rescaled them to have the same, comparable
range, 0 to 10 (e.g., for a score having range 0 to 100, we simply divided the sample mean and standard deviation
by 10). Detailed description of the inclusion/exclusion criteria and outcomes with the full OA data are available in
Hong et al. (2013a). The OA data themselves are also available in the Supporting Information of this article.

3. Methods

3.1. Likelihood

In MTCs, we must carefully distinguish between the terms treatment and arm. The former refers to a drug or device
being tested, while the latter to the data on patients randomized to a particular drug or device in a single study.
We must also distinguish between reference and baseline treatments. The reference treatment is a standard control
treatment (often placebo, or simply no treatment), which can be compared with other active treatments. For our
OA data, we take no treatment as the reference treatment among three possible choices (no treatment, education,
and placebo). The baseline treatment is defined as the treatment assigned as the control arm in each study. That is,
each study has its own baseline treatment, which is often the same as the reference treatment, but could differ.

Suppose we are comparing K treatments from / studies in terms of L outcomes. For any type of aggregated-
level (i.e.,, summarizing over individuals) MTC data, we assume that the observations for a specific outcome from
each study arise conditionally independently from a parametric statistical distributional model. Ignoring covariates
for the moment, we write the distribution as

Yik[/‘*fY[(yik[‘Aikﬁéikf)v i:17"'7l7k:17"'7K7l:17"'7L7 (1)

where Y, is the observed aggregated outcome, fy,(-) is a density function having an unknown parameter A,
(true population location parameter in the context of MTCs) and an assumed-to-be-known nuisance (typically
variance) parameter &, in the k' treatment arm from the i study with respect to the " outcome. For example,
when the measurements Yy, are continuous, Yy, often follows a normal density fy,(-) with unknown true mean
Aie and known standard deviation ;.. We let k=1 index the reference treatment.
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Figure 1. Network graphs of osteoarthritis data: (a) pain outcome and (b) disability outcome. The size of each node represents the number of
studies investigating the drug, the thickness of each edge denotes the total number of samples for the comparison, and the numbers on the edges
indicate the numbers of studies investigating the comparison.
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3.2. Generalized Lu and Ades model

In this paper, we only consider random treatment effects models, although a fixed treatment effects model can
easily be implemented. For the Lu and Ades (2004, 2006) model framework, we observe a total of M data points
(i.e., sum of the number of observed arms in every study), and we estimate random effects by using only those
observed data. Extending Lu and Ades (2004, 2006) to the GLM case (Dias et al., 2013b), we enhance (1) with a
linear predictor and link function for the unknown parameter Ay, namely

9¢(Aike) = Oie = atipe + ik ¢, (2)

where g,(-) is the known link function, such as the identity, logit, or log link for a continuous, binary, or count
response, respectively, and 0y, is the linear predictor (McCulloch et al., 2008; again we assume no covariate at
the moment). Given that B indicates the baseline treatment in each study i, a;5, are the baseline treatment effects,
and Jig, are the random effects of contrasts (estimated only by observed data) between treatment k and the
baseline treatment B for outcome ¢ in study i, with J;g=0 if k=B. We define dj as the fixed mean parameter
of contrasts between treatments k and j for outcome ¢, with d,=0 when j=k. We infer the treatment effects in
terms of dyy, always comparing the k™ treatment with the reference treatment, so that we need to only assign
a prior to the dy, to obtain dj,=d,, — dj, under the consistency assumption (Lu and Ades, 2006).
We often assume homogeneous variance across random effects for all two-arm studies, that is,

ik (5~N(d1k( *dmg.,fi), for k#B. 3)

Again, djgi, is 0 when k=B, and z, is the standard deviation of the random contrast effects for outcome ¢. We
denote this model as the LA-style homogeneous random effects model (LAREhom). For multi-arm trials, the ;g in
(3) are replaced by a vector that follows a multivariate normal distribution with dimension equals to the number of
arms in study i minus one, for each outcome ¢. Here, the between-arm-contrast correlation is 0.5 as a consequence
of the homogeneous variance and consistency assumptions (Higgins and Whitehead, 1996; Lu and Ades, 2006).

Lu and Ades-style models always assume fixed study-specific baseline effects ;5. generally considering them
to be nuisance parameters. That is, the estimation and interpretation of baseline effects are not of interest in LA
models. However, they may well be of interest in many situations and may often be sensibly assumed to be
exchangeable across studies (Hong et al., 2013b). Moreover, a hierarchical Bayes model requires all parameters
to have valid interpretations, with nuisance parameters integrated out from joint posterior distributions, in order
for the resulting marginal posteriors of the remaining parameters of interest to be valid (Carlin and Louis, 2009).

3.3. Modeling for missing data and correlations between treatments and outcomes

We denote a model that parameterizes relative effect (e.g., mean difference or odds ratio) as a contrast-based (CB)
model and absolute effect (e.g., mean effect or odds) as an arm-based (AB) model. LA-style models use a CB
approach. Note that the mean effect of random contrasts between treatment k and reference treatment is the
canonical parameter in CB models, whereas for AB models, it is the mean of the random treatment effects for
treatment k, for each outcome ¢. Although CB models are widely applied in MTC settings, AB models offer
advantages in ease of interpretation, prior specification, and model fitting. Moreover, absolute measures of effect
will often be of genuine interest, for example, the absolute amount of reduction in blood glucose produced by a
given diabetes treatment. CB models assume exchangeability across relative effects, a weaker assumption than
the AB models’ assumption of exchangeability among absolute effects. Some researchers think that random
baselines and arm-based modeling ‘break the randomization’ (because they assume treatment arms are
exchangeable across studies) and are unlikely to hold in practice (because trial populations will often not be
exchangeable). Note that the terms ‘contrast-based’ and ‘arm-based’ are used differently by other authors (Dias
et al, 2011a; Salanti et al.,, 2008; Franchini et al., 2012), for example, to indicate different types of data entry for
meta-analysis: a trial could report only the relative measurements between arms (contrast-based) or
measurements for each arm (arm-based).

However, LA-style models have some limitations as well. It is common that the number of treatments
compared in the i study is far less than the complete collection of K treatments in the given MTC dataset. Under
the LA model framework, because each study contributes to the likelihood for a different set of treatments, using
only the observed measurements can complicate specifying the unstructured covariance matrix of the random
effects gk, (i-e., assuming uncommon random effect variability across treatments) leading to difficulties in prior
assignment and parameter inference for multi-arm trials. That is, different treatments are compared in different
studies, and not all studies investigate all arms. For example, suppose two trials investigate three treatments
but each trial has a different set of compared treatments. The length of ;g vector is two, the same for both
studies, and each vector follows a bivariate normal distribution with a 2 x 2 covariance matrix. However, it might
be difficult to assign a prior distribution (e.g., a conjugate inverse Wishart specification) on the covariance matrix
because the two covariance matrices could contain partially or fully different information, even though their
dimensions are the same. Lu and Ades (2009) discuss modeling heterogeneous random effect variability, but their
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recommendations seem too complicated to extend to multiple outcomes. Note that this is not an issue when we
assume common random variability across treatments.

In addition, a;g, is considered to be a nuisance parameter under the LA model framework and is typically left
uninterpreted by CB modelers. However, NMA baseline effects are getting more attention as a way of
understanding the baseline natural history or baseline risk (Dias et al, 2013a; Achana et al., 2013). Dias et al.
(2013a) caution against assuming exchangeable baseline effects, although Achana et al. (2013) found that their
results were not too influenced by this assumption in their examples. Finally, researchers may select study arms
based on the trials conducted previously, resulting in missingness that may be missing at random when those
preceding trials are included as a part of the data, or missing not at random when they excluded from the data.

To remedy this, we assume that all studies can in principle contain arms for every treatment, but in practice,
much of this information is missing for various reasons. Thus, we will impute such unobserved arms by
considering them as unknown parameters to be imputed along with the other model unknowns. Under this
assumption, all studies can always share a common (although possibly missing) baseline treatment, B=1 in (2).

3.3.1. Contrast-based approach. Under our missing data framework, now Ay, in (1) contains all true means from
both M observed and IKL-M unobserved data points. We propose three contrast-based random effects models,
denoted by CBRET1, 2, and 3, under three different assumptions, and they can be written as

CBRE1, 2: g,(Aike) = Oixe = aine + dike + Hikes 4)
CBRE3: g,(Aike) = Oie = atjne + duke + vik + wie. ©)

Note that in (4), 71k are the random effects of contrasts, distinct from g, in (2), 7;14, contains both observed
and unobserved information, and diks, 7i1ke Vi and wj, set to be zero when k=1 for all £. The CBRE1 model
assumes independence between outcomes, and 7, ~Nx_+(0,%,), where ;=20 ... ,r],-w)r and %, is a
(K—1)x (K— 1) unstructured covariance matrix for £=1,... ,L. Here, we cannot adopt a common X" instead of
¥, because the scale or range of the data could differ across outcomes. Alternatively, for CBRE2, we can allow
correlation among outcomes by respecifying 7y ~N.(0, Ay), where ny= i, --- r’7i1kL)T and Ay is a LxL
unstructured covariance matrix for k=2, ..., K. In this model, we assume independent random contrasts between
treatments but incorporate the correlation structure of those contrasts between outcomes through A,. Unlike
CBRE1, we can replace the A, with a single A", which gives homogeneous variance across treatments, but
heterogeneous variance across outcomes. Here, the number of random effects in the CBRE1 and 2 models is
I(K-T)L, pretty large compared with the size of data. However, these random effects share common covariance
matrices, so they can borrow information from each other and remain Bayesianly estimable.

To reduce the number of random effects and incorporate both treatment-wise and outcome-wise correlations,
we partition random effects into two independent sources in (5) and assume v;=(vj, ... ,viK) ~Nx_ 1(0,%) and
w;=(p,... ,05) ~N;(0,A). Here, £ and A are (K—1)x(K—1) and LxL unstructured matrices capturing
correlation between treatments and outcomes, respectively, and only /(K — 1) + /L random effects are estimated.
In addition, the total number of parameters in £ and A is smaller than that in £, under CBRE1 when K is large
and L is small, which is commonly observed in a MTC dataset. We denote this parsimonious random effects model
as CBRE3. Note that because the unstructured covariance matrices are positive definite (thanks to the Wishart
prior, which will be discussed in Section 3.4), all CBRE models respect the second-order consistency condition
defined by Lu and Ades (2009), see the Supporting Information. Recently, White et al. (2012) suggested a similar
approach that is based on imputation (but only for the reference treatment) and implemented their frequentist
(not Bayesian) models in Stata. A similar imputation strategy for the baseline adjustment is also suggested by Dias
et al. (2013a) and Achana et al. (2013).

In our proposed CB methods, because we always have 7, ni, v, and w;, vectors of the same length for every
study i, common covariance matrices can be used for every study with a simple prior assignment. In addition,
our modeling allows us to incorporate all sources of uncertainty by considering unobserved arms as missing data
to be imputed by our MCMC algorithm. Suppose Study 1 compares treatments 1, 2, and 3, with respect to a single
outcome, so that it provides information about two contrasts, 7112 and 7473, under the notation of (4) and
dropping the ¢ subscript. Suppose further that Study 2 compares only treatments 1 and 2, and Study 3 includes
only treatments 1 and 3. Here, we assume that (7;12, 11,-13)T~N(O, %). In this simple example, we can impute the
missing contrasts 7,73 and 737, using Gibbs sampling with the following steps:

Step 0. Specify initial values 7, £?, and 2?, where 7 is the set of random effect parameters and Z is the set of
other unknown parameters. Set i=0.
Step 1. Draw a value ;1<2i1+31) from the full conditional posterior distribution p<17213\n(3i1)2,2<’),/1(i), 712"1)2,;72"1)3,;12?2,
’7§'1)3’ y), where y is the observed data
i R, . . .
Step 2. Draw a value 15 from p(nsrlas 0.7, . ey

Step 3. Draw a value =" from p(2|n§’1§1), ’7;,-121)7/1(,)7 i, ;7%, ) ;7(3i1)3, y)
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j i) )
Step 4. Draw a value 68+ " from p<9|;7§'13 ),;7(3’12 VA i )y

(i+1 i+1 i+1 i+1
M1z )7772'13 )v’7(zl1z ),and ’75’13 )

i+1) ) ) () () )

Step 5. Similarly, draw values
Step 6. Seti=i+1 and repeat Steps 1 to 5 until all MCMC chains converge.

Note that the order of the draw does not matter. Similarly, we can apply the same algorithm with multiple
outcomes borrowing information from the relationships between outcomes. Finally, in our CB approach, a;;,
becomes meaningful because the baseline treatment is the same across all studies.

3.3.2. Arm-based approach. Random effects models with the AB parameterization analogous to those for three
CBRE models can be written by respecifying models (4) and (5) as

ABRET, 2: g/(Aike) = Oike = tip + Mies ©6)
ABRE3 : g,(Aike) = Oike = pye + vik + wic, @

where . is the fixed mean effect of treatment k associated with the link function g,(-) with respect to outcome ¢
and 7 is the study-specific random effect.

If we begin by assuming independent random effects between outcomes, the random effects 7, in (6) will
have the following distribution: #;, ~ Nk(0, /), Where 7;,= (114, . . ,n,»K[)T and X, is a Kx K unstructured covariance
matrix for £=1, ... ,L. We denote this model as ABRE1. Similarly to CBRE2, we can instead allow dependence of
random effects between outcomes but independence between treatments by defining 7y = (i, --- ,n,kL)T~
N (0, Ay) where Ay is a LxL unstructured covariance matrix capturing relations between outcomes, for k=1,
... ,K. We refer to this model as ABRE2. Again, we would not likely adopt a common X" instead of , in ABRET,
whereas we might well use A” instead of A, in ABRE2.

As in the CBRE3 model, we partition the 7;, into two independent sources as in (7), denoted by ABRE3, and
assign the following distributions: v;= (v, ... ,vi)' ~Nk(0,%) and w;=(wp, ... ,wy) ~Ni(0, A). Here, £ and A are
Kx K and Lx L unstructured covariance matrices. Again, ABRE3 has not only fewer parameters to be estimated
but also fewer constraints because relationships between treatments and outcomes are modeled simultaneously,
yet independently. In the Supporting Information, we derive the full correlation matrix under the ABRE3 model.

The parameters in arm-based models permit more straightforward interpretation, especially in estimating an
absolute treatment effect. However, these models do require fairly strong assumptions regarding similarity and
exchangeability between arms across all populations, in order to permit meaningful clinical inference. In fact,
CB models also require exchangeability, but among treatment contrasts, not arms, and this weaker assumption
is more readily accepted by the meta-analysis community. Thus, this could be an advantage of contrast-based
models in settings where we doubt cross-trial similarity of like-named arms. However, a possible advantage of
AB over CB models is that AB computation is relatively straightforward because it avoids the additional baseline
effect parameters (o;1,) and the d;,,7i11,=0 constraints. Note also that in AB models, all of our random effect
covariance matrices are unstructured. That is, AB models not only are less constrained but also have a slightly
larger number of parameters to estimate than CB models.

3.4.  Prior distributions

We assume as noninformative a prior as possible, in order to let the data dominate the posterior calculation.
Specifically, a N(O, 100?) is used for ag, and dy, and a vague uniform distribution, namely, Uniform(0.01,10), is
assigned to 7, in the LAREhom model (Gelman, 2006). In our proposed CB models, we may choose to assume

exchangeable baseline effects by assigning a,-1g~N(ag,r§l>, where the hyperparameters a, and z,, follow

noninformative normal and uniform distributions, respectively. Throughout all CB and AB models, the canonical
parameters (dx, and uy,, respectively) follow a N(O, 100?) prior distribution, while all inverse covariance matrices
follow a Wishart(€, y) having a mean of yQ~ ' and degrees of freedom parameter y to be the matrix dimension,
because this is the smallest value that will still yield a proper prior. For our OA data, we choose Q to be 5y
times the identity matrix, yielding a 95% prior credible interval from 3.33 to 253 for the mean standard
deviation of the random effects, in order to be fairly noninformative while ensuring MCMC convergence (Carlin
and Louis, 2009).

We use WinBUGS to generate two parallel chains of 50,000 MCMC samples after a 50,000-iteration burn-in. To
check MCMC convergence, we used standard diagnostics, including trace plots and lag 1 sample autocorrelations.
Independence and normality were checked using plots of standardized residuals, which emerged as scattered
randomly around 0 between —2 and 2 under all models (Lunn et al, 2012). The winBUGS programs for the
LAREhom, CBRE3, and ABRE3 models are available in the Supporting Information.
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4. Simulation study

4.1. Setting

In this simulation study, we will investigate how well our missing data approaches perform under different
missingness mechanisms compared with the LA method in terms of bias, mean squared error (MSE), and coverage
probability. The outline of our simulation study is

1. Generate data under the ABRE3 model framework, fit the LAREhom, CBRE3, and ABRE3 models, and
compare bias, MSE, and coverage probability of absolute treatment effect estimates

2. Generate data under the LAREhom model framework, fit the LAREhom, CBRE3, and ABRE3 models, and
compare bias, MSE, and coverage probability of relative treatment effect estimates

A simulated dataset (v, Yi2) has 30 studies (i=1, ... ,30) comparing three treatments, denoted 1, 2, and 3, for
two continuous outcomes, and the number of iterations is 500. We consider four different data structures
illustrated in Figure 2.

We start from simulating complete data (denoted complete) as in panel (a) of Figure 2. Under the ABRE3
framework in (7), we choose the identity link function and set (uqq, 21, 31) =(2,0,1), (12, Uzp, t32) =(—1,2,1),
(Vi viz vis) ~N5(0, %), where ¥ has variances 1 and a common between-treatment correlation 0.5, and
(i, wi2)"~Ny(0, A),where A has variances 1 and a between-outcome correlation p for the true parameters. We
consider p to be 0.2 and 0.8. Next, under the LAREhom framework in (2), we again choose the identity link
function and let the true fixed study-specific baseline effect a;5, be sampled as Uniform(0,4) and Uniform(—3, 1) for
=1 and 2, respectively. So, we assign somewhat arbitrary numbers to o;z, and the ranges of the uniform
distributions are selected to have means to be the same as u;; and u,, and variances around 1.3. Because
LAREhom does not model correlation between outcomes, we borrow the CBRE3 model parameterization for
random effects in (5) and set (dy11,d121,d131) = (0, — 2, — 1), (d112, d122, d132) =(0,3,2), (Vi2, vis)" ~ N»(0, %), where
¥ has variances 1 and a common between-treatment correlation 0.5, and (a;, @) ~N5(0, A), where A has
variances 1 and a between-outcome correlation p for the true parameters. Again, we set p=0.2 and 0.8. For
unequivocal investigation of the impacts of various missingness patterns, we set other features of our simulated
data as simple as possible: namely, we assume that every study has a sample size of 200, and a standard deviation
of 2 in every arm.

We create three more partially missing data structures by having two separate sets of five, ten, or fifteen studies
drop one of their arms from the complete data, where one set compares Treatments 1 and 2 and the other
compares Treatments 2 and 3, shown in panels (b), (c) and, (d) of Figure 2, as Missing1, 2, and 3, respectively. Note
that the Missing 3 structure contains no multi-arm trials at all. We investigate three missingness mechanisms:
missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR with
Missing1, 2, and 3 are denoted by MCART, 2, and 3, respectively, and similarly for MAR and MNAR (denoted MART,
2,3 and MNART, 2, 3).

Outcome 1 Outcome 2 Outcome 1 Outcome 2

Number of studies
Number of studies

(b) Missingl

Outcome 1 Outcome 2

e 12 3.1 .2 3.
E S il »
3 g i |
£ £ 15 | % : |
. :7 Ol Hi
(¢) Missing?2 (d) Missing3

Figure 2. Data structures for simulation study: (a) complete data; (b) Missing1; (c) Missing2; and (d) Missing3.
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We use vague prior distributions for all model parameters as described in Section 3.4. We also consider weakly
informative priors for covariance matrices of random effects in ABRE3 and CBRE3 models; we set the mean of
Wishart prior distribution equal to the true inverse covariance matrix and degrees of freedom y to be 30. We used
the BRugs package in R to perform our simulation studies, where we call OpenBUGS (Lunn et al., 2009) 500 times
from R, once for each simulated dataset. In each case, we obtain 20,000 samples, after 5000-sample and 30,000-
sample burn-in for LA-style models and our models, respectively. LA-style models needed a shorter burn-in period
because they converge relatively quickly.

4.2. Results

Although we fit three models to the two generated data sets as described earlier, we only report partial results
here because the results under CBRE3 and ABRE3 are similar regardless of the data generation. First, we consider
the LAREhom and ABRE3 models with the data generated under the ABRE3 framework and compare estimates of
the absolute treatment effect uy,. Under the LAREhom model, w1, gz, and us, are estimated by E(aii,),
E(aing) + di2s and E(o10) + dq3, respectively. Second, we report results under LAREhom and CBRE3 models when
the data are generated by the LAREhom framework and compare estimates of the relative treatment effect
dike, Which is estimated by uy, — 11, in the ABRE3 model. Note that LAREhom does not model correlation between
outcomes. As such, although we simulate a dataset under the basic LAREhom framework, this model is still slightly
misspecified for p > 0.

Figures 3 and 4 plot the bias and MSE of uy; and d;, when the data are generated under ABRE3 [panels (a), (b),
and (c)] and LAREhom [panels (d) and (e)], respectively, with p=0.8 and vague priors, across the 10 different
missingness settings. We only report those parameters for the first outcome (£ = 1) because parameters associated
with the second outcome produce results very similar to those for the first outcome. Note that under LAREhom
models, E(o;1,) is calculated using studies including Treatment 1. In panels (a), (b), and (c) of Figures 3 and 4, both
LAREhom and ABRE3 models yield almost zero bias under the Complete and MCAR settings, with slightly larger
MSE under LAREhom. However, under MAR, LAREhom leads to significantly larger bias and MSE than ABRE3,
and the pattern gets worse as the degree of missingness increases, whereas ABRE3 continues to produce
unbiased estimates with small variabilities. Under MNAR, LAREhom performs worse than ABRE3 in terms of both
bias and MSE. Compared with the MAR setting, ABRE3 produces somewhat larger bias and MSE than those under
MNAR. Note that although every study observes the Treatment 2 arm, LAREhom fails to estimate u;; correctly,
while ABRE3 delivers performance equivalent to that seen with complete data.

In panels (d) and (e) of Figures 3 and 4, the results are similar under the Complete, MCAR, and MAR settings as
in panels (a), (b), and (c). However, under MNAR, LAREhom gives a lot smaller bias and MSE for d,,; and d;3; than
CBRE3. A similar trend is observed when we apply different logit models of missingness for MNAR. In particular, we

tried three more sets of logit models: (1) <Iogit(p[{,§}s> = Bt e+ 2Vin + Vina, logit (pfﬁi) =B Y — y,»32>;

) <|°9it (Pfﬁék) = Biag + Y1 + Yizr + Yina + Vs, logit (Pfrﬁs) = Biming + Vi T Yiz1 = Y2 — Yisz) ; and (3)

<|°9it(Pm}s> =Ry Y Y Vg — Vi _Yi32>|°9it(PiT,,’1t7?s> = Bimimg +Yim + Y + Yz — Yo +

Yira + Yiz2)- In addition, bias and MSE of d1,; and d;3; in LAREhom when the data are generated by ABRE3 under
MNAR have the same patterns as seen in panels (d) and (e).

Recall that dy,, can be defined as uy, — uq,. After trying various logit models of missingness for MNAR, we find
that the estimated uy, under LAREhom tends to be biased to the same degree, producing oddly unbiased d,
estimates under MNAR. This is hard to interpret because the missingness mechanism behind MNAR is complicated
and not intuitive compared with MAR. However, these results do not imply that LAREhom performs better than
CBRE3 under MNAR because LAREhom does not correctly estimate uy, in panels (a), (b), and (c). Although CBRE3
imputes missing data given observed information, it does not model the missingness specifically and gives poorer
estimates of both u,, and d,x, under MNAR than MAR.

Figure 5 displays coverage probabilities of 95% equal-tail credible intervals for parameters corresponding to
those in Figures 3 and 4. In panel (a), the coverage probability of 1, under LAREhom is below 0.2 across all
simulation settings even when it is not biased. Recall x4, is calculated by E(aj,) under LAREhom. Because E(a;1,)
is not a parameter but just the average of estimated «;,, the 95% credible intervals for E(a;;,) under LAREhom
are too narrow, resulting in the consistently low coverage probability. The coverage probability for wuq, under
ABRE3 is around 0.95, the nominal coverage probability, except under MNAR. Panels (b) and (c) reveal that
coverage probability gets lower as the bias gets larger, and estimates under LAREhom have low coverage
probabilities under MAR and MNAR. Here, the estimates of d;,; and d;3; under LAREhom cover the narrow
credible intervals for E(a;1,), and the LAREhom model yield coverage probabilities for 15, and u3; greater than
0.8 under Complete and MCAR, although they still cannot reach 0.95. In panels (d) and (e), coverage probabilities
under CBRE3 are always around 0.95, except under MNAR, while LAREhom performs poorly only under MAR. Here,
again, d;; and d,3; estimates in LAREhom models under MNAR give coverage probabilities close to 0.95, resulting
from the aforementioned oddly unbiased estimates.
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Figure 3. Bias of model parameters from the simulation study. Data are generated under the ABRE3 model framework for panels (a), (b), and (c)
and under the LAREhom model framework for panels (d) and (e): (@) u11; (b) u21; (€) p3q; (d) di2q; and (€) dy34.

With vague priors, the between-outcome correlation p is well estimated, while the between-treatment
correlation is somewhat underestimated (estimates are around 0.2). Both correlations are correctly estimated
when we apply weakly informative priors, but this does not directly affect the estimation of treatment effects
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Figure 4. MSE of model parameters from the simulation study. Data are generated under the ABRE3 model framework for panels (a), (b), and (c)
and under the LAREhom model framework for panels (d) and (e): (a) u11; (b) 21; (€) u31; (d) dr21; and (e) dy31.

and yield equivalent results to those under vague priors overall. Results are roughly the same when we generate

500 datasets under the setting p=0.2.
Proponents of LA-style models might think that our simulation setup is favorable to our proposed models,

because it employs random baseline effects. Although LA models do not adopt such effects, we used the same
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Figure 5. Coverage probabilities of model parameters from the simulation study. Data are generated under the ABRE3 model framework for
panels (a), (b), and (c) and under the Lu and Ades-style homogeneous random effects model (LAREhom) model framework for panels (d) and

(€): (@) p11; (b) 21 (€) wz1; (d) dhzr; and (e) di.

uniform distribution across all studies to sample these effects, a natural way to simulate MTC data. In addition,
when we simulated data under LAREhom, we set the covariance matrix to have a homogeneous variance with
0.5 correlation - exactly what LAREhom fits, suggesting this simulation may be slightly favorable to LAREhom.
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We acknowledge that LAREhom does not allow the between-outcome correlation while our proposed models do.
However, we suspect this is not the reason that LAREhom performs poorly in our simulation study; rather, it is
because LAREhom does not impute any missing arms into the model, inflating bias and MSE of the estimates
under MCAR and MAR. In fact, we found the same patterns of bias and MSE when we only considered a single
outcome with fixed baseline effects not sampled from any distribution. This alternate simulation setting and its
results are added in the Supporting Information.

5. Osteoarthritis data analysis

We now use our models to analyze the OA data introduced in Section 2. Our OA data have two continuous
outcomes, pain and disability (=1 and 2, respectively), and we can assume a normal likelihood for the data
and an identity link function. That is, the likelihood (1) is y,»k,~N(Aik[,é,2l([/n,k), where yj, is the observed sample

mean of the pain and disability score change, Ay, is the unknown true mean score change, é,zkf is the known
sample variance, and njy, is the number of subjects in the k" treatment arm from the i study with respect to
the ¢ outcome. Under the identity link, we can replace g.(Aj,) in all equations in Section 3 with Ay,. We fit seven
models: LAREhom, CBRE1, CBRE2, CBRE3, ABRE1, ABRE2, and ABRE3, where the LAREhom model does not employ
the missingness framework. Note that the LAREhom model assumes study-specific baseline effects and the three
CBRE models assume exchangeable baseline effects. We apply homogeneous covariance matrices for CBRE2 and
ABRE2; that is, a common A" is applied, instead of a separate A for each k. All CB and AB models incorporate
missingness; CBRET and ABRE1 allow correlation structure between treatments, CBRE2 and ABRE2 allow
correlation structure between outcomes, and CBRE3 and ABRE3 permit correlations between outcomes and
treatments simultaneously.

Table 1 compares the fit of the seven models with our OA data (Spiegelhalter et al. (2002)). CBRE3 fits the data
best (smallest D) while ABRE3 fits poorly (largest D) because ABRE3 has not only fewer assumptions but also fewer
parameters to be estimated than CBRE3, and this is shown as higher pp in CBRE3. The remaining models give
similar D values. All AB models except ABRE3 give very slightly higher py than the corresponding CB models
because again, they are less constrained and more parameters need to be estimated. However, across three
models under each CB or AB parameterization, CBRE3 and ABRE3 have the smallest pp values because these
models are slightly more parsimonious. Because our data are sparse and we lack sufficient data to accurately
estimate all the treatment-by-treatment covariances, the heterogeneous variance assumption, a feature of CBRE1
and ABRE1, is not a good choice here. Considering both goodness of fit and complexity, CBRE3 or ABRE3 are the
best overall, although the deviance information criterion (DIC) differences between either model and LAREhom
are not of practical importance (less than five units).

Figure 6 exhibits posterior medians of d,,, the mean difference between therapy k and no treatment, with 95%
Bayesian credible intervals (BCls) for each outcome across five of the models (all but CBRE1 and ABRET). We define
dyxe in AB-style models as uy, — 1, Smaller scores mean better conditions for both pain and disability. We
indicate the best treatment with respect to each outcome in each model with a triangle character, and the worst
treatment with a square, based on Eiw posterior medians. Although the DICs of LAREhom, CBRE2, and ABRE2
models are similar, the estimates differ for some therapies; for the pain outcome, our CB and AB models agree that
low and high intensity diathermy and ultrasound perform worse than no treatment, while LAREhom oddly
reverses this conclusion (although the difference is not significant). As we expected, the 95% BCls from LAREhom,
CBRE2, and ABRE2 are narrower than those for CBRE3 and ABRE3 models. The estimated standard deviations of
random effects (z, in LAREhom; square roots of diagonal elements of A" in CBRE2 and ABRE2) are always between
1 and 1.5 for these three models, with associated 95% BCl widths around 0.4. By contrast, CBRE3 and ABRE3 give a
bit larger standard deviations, between 2 and 3.5 with 95% BCl widths mainly from 1.7 to 6. Under LAREhom,
CBRE2, and ABRE2, proprioception exercise and strength exercise reduce pain significantly better than no active
treatment, while aerobic exercise reduces pain significantly better than no treatment under LAREhom and CBRE2,
but reduces disability significantly better than no treatment only under LAREhom. Compared with the pain
outcome, the 95% BCls for the disability outcome are wider because only about half as many studies reported this
outcome, and the best therapy now varies across models.

Table 1. Model comparisons for osteoarthritis data analysis using DIC.

LAREhom CBRE1 CBRE2 CBRE3 ABRE1 ABRE2 ABRE3
D 62.6 61.6 62.2 60.8 59.1 61.1 68.2
Pp 154.5 162.9 153.9 152.1 164.4 158.0 145.9
DIC 2171 224.6 216.1 2129 2235 219.1 2141
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Figure 6. Posterior medians of d,, with 95% Bayesian posterior credible sets for each outcome, five hierarchical models for the osteoarthritis
data.

The posterior median correlations between the two outcomes are 0.49 (95% BCl: 0.18, 0.71) and 0.38 (0.06, 0.61)
for the CBRE2 and ABRE2 models, respectively, suggesting mild positive linear association between reported pain
and disability scores in both contrast-based and arm-based parameterizations. CBRE3 and ABRE3 give relatively
small between-outcome correlation estimates, 0.30 (—0.22, 0.68) and 0.04 (—0.41, 0.48), respectively, because
between-treatment correlations are also implied in these models (again, see the Appendix for the full calculation
of the correlation matrix).

Using random baselines can make a material difference in the treatment effect estimates, although the degree
of difference will change for different data sets. To investigate this, we fit the LAREhom, CBRE1 with random
effects, and CBRE1 with fixed baseline effects (i.e., assuming a,;,~ N(O, 100%)) models to the OA data, considering
the pain outcome only, and compare estimates of relative treatment effects. Comparing the two CBRET models,
CBRE1 with random baseline effects flips the point estimates for low diathermy, high diathermy, and ultrasound
to the other side of the null value and provides smaller standard errors for all estimates. LAREhom and CBRE1 with
fixed baseline effects agree on the directions of treatment effects except for ultrasound (although the
corresponding standard error estimates under both models are very large), but LAREhom yields smaller standard
errors because the model does not acknowledge the missing data.

As a sensitivity analysis, we repeated our work under weakly informative Wishart priors for ABRE2 and 3 based
on the estimates obtained under vague priors. For ABRE2, we assume 0.5 correlation between outcomes with
mean variances 1.5 with 30 degrees of freedom; for ABRE3, we assume zero between-outcome correlation and
mean variances 1, also with 30 degrees of freedom. DIC values decrease about a half unit, and standard deviations
of posterior estimates tend to decrease a bit, but the estimated treatment effect parameters do not change much.
This agrees with our simulation study results.

6. Discussion

In this paper, we have proposed Bayesian MTC approaches for multiple outcomes under a novel missing data
framework and compared our results to those using standard LA hierarchical modeling methods. Our framework
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handled varying outcome types using appropriate distributional models and link functions. We considered
unobserved trial arms to be missing data and imputed them by borrowing information from the observed
relationships in other trials. We also incorporated multiple outcomes into contrast-based and arm-based models
through random effects with a variety of correlation structures. We used simulation to show that our imputation
models can outperform standard models in terms of bias, MSE, and coverage probability of estimators under
various missingness mechanisms. Finally, we illustrated our methods using real data. Note that this paper is a
successor to that of Hong et al. (2013a), who focused on treatment ranking methods for multiple continuous
outcomes and investigated the impact of the ignorance of outcome-wise correlation on hypothesis testing via
simulation. By contrast, our paper focused on extending the Gaussian linear model to the GLM setting; also, its
simulation studies sought to examine the effect of missingness pattern on bias and MSE of parameters of interest.

Several articles assume that missing arms occur at random (Caldwell et al., 2005; Giovane et al., 2013), but such
missingness is not considered in the standard LA approach, implying that, technically, LA assumes missingness is
completely at random. However, when missing data have any known patterns or relations to the observed (or even
unobserved) data, the missingness mechanism should be taken into consideration. Although we do not explicitly
specify the missingness pattern in our models, our imputation approach implicitly assumes MAR because we use
only the observed relations to impute missing information. When the data are MNAR, this might be a sign of
inconsistency. Explicit modeling of noningnorable missingness mechanisms in the Bayesian MTC modeling is
an ongoing area of research.

One of the contentious issues in MTCs is the long meta-analytic tradition of mistrust for models with
exchangeable baseline effects, a topic that has been discussed extensively for pairwise meta-analysis (van
Houwelingen and Senn, 1999; Senn, 2010). Senn (2010) summarizes van Houwelingen’s work and concludes that
using random baseline effects could raise an issue of bias in theory, but the approach has some advantages, and
the bias is likely to be small in practice. Achana et al. (2013) present work along the lines of our random baseline
approach to model the association between baseline risk and effectiveness. They impute non-zero data for the
unobserved control arms by assigning them a shared distribution. They acknowledge that the exchangeablility
of baseline effects is a strong assumption and compromises the randomization. Similarly, Dias et al. (2013a)
suggest modeling the baseline and relative effects separately and assume exchangeable baselines as one possible
way of constructing a baseline history model. Dewilde and Hawkins (2012) treat the baseline effect as a nuisance
parameter to ensure that the treatment effect estimates from MTCs are influenced only by the within-trial relative
treatment effects, not by differences in absolute response across trials, and believe that this is the way to preserve
unbiased estimates, a benefit of randomization. Dias et al. (2013b) caution that using random baselines might
deliver biased relative treatment effect estimates unless the model is correct.

The advantage of randomized controlled trials as MTC inputs is that they control for the heterogeneity of arms
across studies, thus delivering unbiased evidence on relative treatment effects. In meta-analysis, we first collect
and screen randomized studies with several inclusion and exclusion criteria, which often concern characteristics
of the target populations. Then, we conduct a meta-analysis (usually contrast-based) under the fundamental
assumption that relative treatment effects are exchangeable across studies, and this approach is widely accepted
by the meta-analysis community. However, specifically in the LA modeling, the baseline treatment changes across
trials. This means the CB model’s assumption of exchangeability of effects relative to an arbitrary baseline remains
a lot to assume, and its failure need not logically preclude exchangeability of effects of a common (albeit
sometimes imputed) baseline, as our AB models typically assume. This latter assumption will often be fair given
that the MTC data arise from similar study populations, although we acknowledge the assumption under arm-
based models is significantly stronger than that under contrast-based models. Unfortunately, both relative and
absolute effect exchangeability assumptions would be flawed if the collected studies were heterogeneous and
thus did not represent a common target population. For example, suppose that a drug performs much better with
sicker people than with healthier people. In this case, the exchangeability of relative effects may not hold. In any
case, while AB methods may risk more bias, the control of which is typically most important in NMA, the inherent
statistical tradeoff between bias and variance (Carlin and Louis, 2009, Ch.1) means that AB methods may still
outperform CB in terms of mean-squared error. Of course, the homogeneity of studies can be empirically checked
if additional covariates are available, although sadly our OA data do not provide any such covariates.

Our methods have some limitations. First, exchangeability assumptions are typically not empirically verifiable.
MTCs are used to pool data from a systematic review of the literature designed to answer a specific question, but
the starting point assumes inclusion of all studies relevant for the target population of interest. Although our OA
data example has a clear pre-defined target population, in general, AB inference should be made with caution
because we lack information on any trials that were not selected for inclusion in the MTC. That is, individual
studies typically enjoy internal validity, but possibly limited external validity across studies, especially when
baseline patient population characteristics are poorly reported in publications, or there is sparse evidence on
the population of interest. Plausibility of all NMA assumptions (including exchangeability) needs to be considered
on a case-by-case basis. This issue, and the associated risk of selection bias, was not considered in this paper.

Second, our models sometimes result in slow MCMC convergence because we work with the full imputed
missing data-parameter space. When data are sparse, some covariances in unstructured covariance matrices of
random effects are estimated as prior means. Although all MCMC chains in our simulation study and data analysis
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converge well under vague Wishart priors, these priors must be carefully selected to ensure MCMC convergence
and correct estimation of variability, and alternatively structured covariance matrices should perhaps also can be
considered. Lambert et al. (2005) and Gelman (2006) caution that Wishart and inverse-gamma priors on variance-
covariance matrices can sometimes perform poorly and have computational problems. It is also difficult to ensure
non-informativeness, because large variances are often associated with large correlations. The separation strategy
of Barnard et al. (2000) may offer a reasonable alternative here.

In addition, for decision making, we compared only the estimated treatment effects for each outcome, but we
could also have obtained the probability of being the best treatment by utilizing a weighted score across our
multiple outcomes (Hong et al.,, 2013b).

Lastly, although we devoted scant attention to measuring evidence inconsistency, there have been several
suggestions in this regard. Lu and Ades (2006) add an extra set of terms called w-factors into the model based
on the MTC network graph'’s ‘evidence loops’, but these are hard to identify in the presence of multi-arm trials
and varying baseline treatments across studies. Dias et al. (2010) suggest a node-splitting method that allows
one to split the information estimating a model parameter into two distinct components: direct and indirect.
The resulting two posterior distributions can then be examined for inconsistency. Presanis et al. (2013) and Piepho
et al. (2012) define inconsistency as the interaction between trial types and treatments and then test consistency
by conducting a global Wald test for interaction in a two-way linear mixed model.

Future work looks to extending our methods to mixed types of outcomes (say, a binary safety outcome paired
with a continuous efficacy outcome). Another important future model enhancement is to the case of differential
borrowing of strength across non-exchangeable subgroups, say determined by similarities across trials or
treatments. Furthermore, we hope to extend our models to incorporate both aggregate and individual patient-
level data, potentially permitting the borrowing of strength from patient-level covariates to investigate how those
personal clinical characteristics impact estimated treatment effects.
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